Abstract

The complexity and plasticity of cell fate determination has intrigued cell and developmental biologists for decades. Cellular differentiation is the acquisition of specialized characteristics; which is intimately associated with changes in gene expression, alterations of chromatin, and changes in nuclear architecture. Differentiating tissues exhibit a progressive restriction of cellular plasticity. However, the regenerative ability of some organisms has revealed an amazing capacity for dramatic switches in cell fate, through trans-differentiation and de-differentiation (Sanchez Alvarado and Tsonis, 2006). Furthermore, the groundbreaking work on somatic cell nuclear reprogramming and induced pluripotency has revealed that commitment to cell fate can be far more flexible than previously thought (Lensch and Mummery, 2013). In this research topic on cell fate we aimed to highlight new developments and outstanding questions in our understanding of how chromatin dynamics impact cell fate and cellular reprogramming. We include articles discussing cell fate decisions in a wide variety of contexts and model organisms. The contributions to this topic include review articles, mini-reviews, original research, and perspectives. The work described here encompasses organisms ranging from C. elegans to humans and deals with global cell fate issues of sex determination (Lau and Csankovszki), lineage choice (Chin), preventing premature differentiation (Foret et al.) cell fate and cell cycle regulation (Oyama et al.; Julian and Blais; Ma et al.; Parker), nuclear architecture (Talamas and Capelson) and how dynamic transcriptional repressors promote cell fate choices (Kok and Arnosti). We thank the authors, reviewers and editors for contributing to the stimulating discussion of the open questions in this rapidly changing field.

Highlights

  • The complexity and plasticity of cell fate determination has intrigued cell and developmental biologists for decades

  • Cellular differentiation is the acquisition of specialized characteristics; which is intimately associated with changes in gene expression, alterations of chromatin, and changes in nuclear architecture

  • The work described here encompasses organisms ranging from C. elegans to humans and deals with global cell fate issues of sex determination (Lau and Csankovszki), lineage choice (Chin), preventing premature differentiation (Foret et al.) cell fate and cell cycle regulation (Oyama et al.; Julian and Blais; Ma et al.; Parker), nuclear architecture (Talamas and Capelson) and how dynamic transcriptional repressors promote cell fate choices (Kok and Arnosti)

Read more

Summary

INTRODUCTION

The complexity and plasticity of cell fate determination has intrigued cell and developmental biologists for decades. In this research topic on cell fate we aimed to highlight new developments and outstanding questions in our understanding of how chromatin dynamics impact cell fate and cellular reprogramming. We include articles discussing cell fate decisions in a wide variety of contexts and model organisms. The contributions to this topic include review articles, mini-reviews, original research, and perspectives. The work described here encompasses organisms ranging from C. elegans to humans and deals with global cell fate issues of sex determination (Lau and Csankovszki), lineage choice (Chin), preventing premature differentiation (Foret et al.) cell fate and cell cycle regulation (Oyama et al.; Julian and Blais; Ma et al.; Parker), nuclear architecture (Talamas and Capelson) and how dynamic transcriptional repressors promote cell fate choices (Kok and Arnosti). Reviewers and editors for contributing to the stimulating discussion of the open questions in this rapidly changing field

THE PLASTICITY OF CELL FATE
TECHNICAL ADVANCES IN DECIPHERING CELL FATE REGULATION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call