Abstract

An electroweak baryogenesis (EWBG) mechanism mediated by τ lepton transport is proposed. We extend the Standard Model with a real singlet scalar S to trigger the strong first-order electroweak phase transition (SFOEWPT), and with a set of leptophilic dimension-5 operators to provide sufficient CP violating source. We demonstrate this model is able to generate the observed baryon asymmetry of the universe. This scenario is experimentally testable via either the SFOEWPT gravitational wave signals at the next-generation space-based detectors, or the pp → h* → SS → 4τ process (where h* is an off-shell Higgs) at the hadron colliders. A detailed collider simulation shows that a considerable fraction of parameter space can be probed at the HL-LHC, while almost the whole parameter space allowed by EWBG can be reached by the 27 TeV HE-LHC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.