Abstract

Hypothalamic leptinoceptive neurones can be visualized by histochemical demonstration of leptin-induced nuclear translocation of the signalling molecule STAT3. We investigated the relationship of the leptinoceptive neurones to the somatostatin signalling system. With double-labelling immunohistochemistry, we studied the colocalization of leptin-activated transcription factor, STAT3, with somatostatin receptor subtypes, sst1, sst2A, sst2B, sst3 and sst4, or the neuropeptide itself, in the rat hypothalamus. Immunoreactivity for all the entities was widely distributed throughout the entire hypothalamus. Despite the wide distribution, only few cases of colocalization of somatostatin with leptin-activated STAT3 were detected in the paraventricular, arcuate and dorsomedial nuclei. A moderate to high degree of colocalization of nuclear STAT3 and all investigated subtypes of somatostatin receptors was found in the lateral and dorsal hypothalamic areas and in the dorsomedial hypothalamic nucleus. Immunoreactivity for sst1, sst2B and sst4 was present in STAT3-containing nuclei of the paraventricular, periventricular, arcuate and ventromedial hypothalamic neurones, as well as in the retrochiasmatic and posterior hypothalamic areas. Despite the wide distribution of sst2A in the rat hypothalamus, few events of colocalization with leptin-activated STAT3 were observed in the dorsomedial nucleus and in the lateral and dorsal hypothalamic areas only. Many leptin-responsive neurones of the dorsal, lateral, periarcuate, perifornical and posterior hypothalamic areas, as well as in the ventromedial and dorsomedial hypothalamic nuclei, displayed sst3 immunoreactivity at their neuronal cilia. These results provide strong anatomical evidence for the direct interaction of leptin and the somatostatin systems in neuroendocrine control loops such as the energy homeostasis, growth or stress response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.