Abstract

Neuropeptide B (NPB) is a recently identified endogenous ligand for the orphan G protein-coupled receptors GPR7 and GPR8. NPB mRNA is expressed in the human, rat, and mouse brain. With the use of an antiserum directed against the rat NPB, immunoreactivity to NPB (irNPB) was detected in several discrete areas of the hypothalamus and midbrain. In the hypothalamus, irNPB cells were present in the medial preoptic area and nucleus, ventromedial preoptic nucleus, retrochiasmatic nucleus, paraventricular hypothalamic nucleus, supraoptic nucleus, accessory neurosecretory nuclei, periventricular hypothalamic nucleus, dorsomedial hypothalamic nucleus, supraoptic retrochiasmatic nucleus, lateral hypothalamic area, posterior hypothalamic area, dorsal hypothalamic area, and zona incerta. A few irNPB perikarya were noted in the arcuate nucleus, whereas a dense network of nerve fibers was present in the median eminence. In the midbrain, irNPB somata were noted in the substantia nigra (compact, reticular, medial, and lateral parts), paranigral nucleus, ventral tegmental area, interfascicular nucleus, and dorsal raphe nucleus. Neurons in the Edinger–Westphal were strongly labeled. Labeled cells were not detected in the cortex, medulla oblongata, and spinal cord; few lightly labeled cells were occasionally seen in the hippocampus. Double labeling the hypothalamic sections with NPB antiserum and vasopressin or oxytocin antibody revealed that a population of vasopressin- but not oxytocin-immunoreactive cells was irNPB. Tyrosine hydroxylase-positive neurons in the midbrain, presumably dopaminergic, were irNPB. The distribution of irNPB neurons in several areas of the hypothalamus and midbrain together with the colocalization with vasopressin or tyrosine hydroxylase suggests that the peptide may subserve neuroendocrine, autonomic, and motor functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.