Abstract

Data with uncertain, missing, censored, and correlated values are commonplace in many research fields including astronomy. Unfortunately, such data are often treated in an ad hoc way in the astronomical literature potentially resulting in inconsistent parameter estimates. Furthermore, in a realistic setting, the variables of interest or their errors may have non-normal distributions which complicates the modeling. I present a novel approach to compute the likelihood function for such data sets. This approach employs Gaussian copulas to decouple the correlation structure of variables and their marginal distributions resulting in a flexible method to compute likelihood functions of data in the presence of measurement uncertainty, censoring, and missing data. I demonstrate its use by determining the slope and intrinsic scatter of the star forming sequence of nearby galaxies from observational data. The outlined algorithm is implemented as the flexible, easy-to-use, open-source Python package LEO-Py.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.