Abstract

The coherent-mode representation theory is firstly used to analyze lensless two-color ghost imaging. A quite complicated expression about the point-spread function (PSF) needs to be given to analyze which wavelength has a stronger affect on imaging quality when the usual integral representation theory is used to ghost imaging. Unlike this theory, the coherent-mode representation theory shows that imaging quality depends crucially on the distribution of the decomposition coefficients of the object imaged in a two-color ghost imaging. The analytical expression of the decomposition coefficients of the object is unconcerned with the wavelength of the light used in the reference arm, but has relevance with the wavelength in the object arm. In other words, imaging quality of two-color ghost imaging depends primarily on the wavelength of the light illuminating the object. Our simulation results also demonstrate this conclusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call