Abstract

Compensated isocurvature perturbations (CIPs) are modes in which the baryon and dark matter density fluctuations cancel. They arise in the curvaton scenario as well as some models of baryogenesis. While they leave no observable effects on the cosmic microwave background (CMB) at linear order, they do spatially modulate two-point CMB statistics and can be reconstructed in a manner similar to gravitational lensing. Due to the similarity between the effects of CMB lensing and CIPs, lensing contributes nearly Gaussian random noise to the CIP estimator that approximately doubles the reconstruction noise power. Additionally, the cross correlation between lensing and the integrated Sachs-Wolfe (ISW) effect generates a correlation between the CIP estimator and the temperature field even in the absence of a correlated CIP signal. For cosmic-variance limited temperature measurements out to multipoles $l \leq 2500$, subtracting a fixed lensing bias degrades the detection threshold for CIPs by a factor of $1.3$, whether or not they are correlated with the adiabatic mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.