Abstract

In this Letter, we present a new active micro-scanning-based imaging platform and associated super-resolution (SR) phase retrieval method in lensfree microscopy to achieve SR dynamic phase imaging. The samples are illuminated by a nearly coherent illumination system, where two orthogonal parallel plates are inserted into the light path and rotate to achieve controllable source micro-scanning, permitting sub-pixel shifts of the holograms on x- and y-axis directions independently. Then sequential low-resolution sub-pixel-shifted holograms are processed to enhance spatial resolution and reconstruct quantitative phase images of the sample simultaneously. The reconstruction result of the benchmark quantitative phase microscopy target (QPTTM) demonstrates a half-pitch lateral resolution of 775nm across a large field-of-view of ∼29.84 mm2, surpassing 2.15 times that of the theoretical Nyquist-Shannon sampling resolution limit imposed by the pixel size of the imaging sensor (1.67μm). The proposed approach is also evaluated by imaging unstained HeLa cells, suggesting it is a promising toolset for high-throughput monitoring and quantitative analysis of unlabeled biological samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.