Abstract

Microplastics (MPs), a pervasive pollutant in aquatic environments, are increasingly recognized for their detrimental effects on aquatic organisms. However, the present understanding of their impact on phytoplankton, particularly freshwater microalgae, remains limited. Furthermore, previous studies have predominantly focused on MP particles, largely overlooking the most prevalent form of MPs in aquatic settings-fibers. In this study, we scrutinized the toxicological implications of microplastic fibers (MFs) spanning four distinct lengths (50 μm, 100 μm, 150 μm, and 200 μm) on the protein-nucleated algae Chlorella pyrenoidosa over a six-day period. The study unequivocally demonstrated that MFs markedly impeded C. pyrenoidosa growth, diminished photosynthetic pigment content, and induced oxidative stress, with all observed effects exhibiting a length-dependent correlation. Electron microscopy further revealed notable damage to algal cell membranes. Cell membrane shrinkage, cytoplasm outflow, and abnormalities in cell division were observed in the 150 μm and 200 μm groups. Furthermore, C. pyrenoidosa clustered around the 200 μm MF were notably denser compared to other groups. The present study demonstrated that MFs had length-dependent toxic effects on C. pyrenoidosa. These findings offer novel insights into the deleterious impact of MFs on aquatic organisms, underscoring the pivotal role of length in influencing their toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call