Abstract

AbstractNanographenes with zigzag edges, for example, anthenes, exhibit a unique nonbonding π‐electron state, which can be described as a spin‐polarized edge state that yields specific magnetic ground state. However, prior researches on the magnetism of anthenes with varying lengths on a surface is lacking. This study systematically fabricated anthenes with inherent zigzag carbon atoms of different lengths ranging from bisanthene to hexanthene. Their magnetic evolution on the Au(111) surface was analyzed through bond‐resolved scanning probe techniques and density functional theory calculations. The analyses revealed a transition in magnetic properties associated with the length of the anthenes, arising from the imbalance between hybridization energy and the Coulomb repulsion between valence electrons. With the increasing length of the anthenes, the ground state transforms gradually from a closed‐shell to an antiferromagnetic open‐shell singlet, exhibiting a weak exchange coupling of 4 meV and a charge transfer‐induced doublet. Therefore, this study formulated a chemically tunable platform to explore size‐dependent π magnetism at the atomic scale, providing a framework for research in organic spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.