Abstract

In this paper, we report a non-equilibrium molecular dynamics study on the length-dependent lattice thermal conductivity of graphene with lengths up to 16 μm at room temperature. In the molecular dynamics simulations, whether the non-equilibrium systems reach the steady states is rigorously investigated, and the times to reach the steady states are found to drastically increase with the lengths of graphene. From the ballistic to the diffusive regime, the lattice thermal conductivities are explicitly calculated and found to keep increasing in a wide range of lengths with finally showing a converging behavior at 16 μm. That obtained macroscopic value of the lattice thermal conductivity of graphene is 3200 W/mK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.