Abstract

Extensive systems have no long scale correlations and behave as a sum of their parts. Various techniques are introduced to determine a characteristic length scale of interaction beyond which spatiotemporal chaos is extensive in reaction-diffusion networks. Information about network size, boundary condition, or abnormalities in network topology gets scrambled in spatiotemporal chaos, and the attenuation of information provides such characteristic length scales. Space-time information flow associated with the recovery of spatiotemporal chaos from finite perturbations, a concept somewhat opposite to the paradigm of Lyapunov exponents, defines another characteristic length scale. High-precision computational studies of asymptotic spatiotemporal chaos in the complex Ginzburg-Landau system and transient spatiotemporal chaos in the Gray-Scott network show that these different length scales are comparable and thus suitable to define a length scale of interaction. Preliminary studies demonstrate the relevance of these length scales for stable chaos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.