Abstract

We report the simultaneous measurement of conductance and thermopower of highly conducting single-molecule junctions using a scanning tunneling microscope-based break-junction setup. We start with molecular backbones (alkanes and oligophenyls) terminated with trimethyltin end groups that cleave off in situ to create junctions where terminal carbons are covalently bonded to the Au electrodes. We apply a thermal gradient across these junctions and measure their conductance and thermopower. Because of the electronic properties of the highly conducting Au-C links, the thermoelectric properties and power factor are very high. Our results show that the molecular thermopower increases nonlinearly with the molecular length while conductance decreases exponentially with increasing molecular length. Density functional theory calculations show that a gateway state representing the Au-C covalent bond plays a key role in the conductance. With this as input, we analyze a series of simplified models and show that a tight-binding model that explicitly includes the gateway states and the molecular backbone states accurately captures the experimentally measured conductance and thermopower trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.