Abstract
It is well known that Leibniz advocated the actual infinite, but that he did not admit infinite collections or infinite numbers. But his assimilation of this account to the scholastic notion of the syncategorematic infinite (more accurately, the infinite syncategorematically understood) has given rise to controversy. A common interpretation is that in mathematics Leibniz’s syncategorematic infinite is identical with the Aristotelian potential infinite, so that it applies only to ideal entities, and is therefore distinct from the actual infinite that applies to the actual world. Against this, I argue in this paper that Leibniz’s actual infinite, understood syncategorematically, applies to any entities that are actually infinite in multitude, whether numbers, actual parts of matter, or monads. It signifies that there are more of them than can be assigned a number, but that there is no infinite number or collection of them (the categorematic infinite), which notion involves a contradiction. Similarly, to say that a magnitude is actually infinitely small in the syncategorematic sense is to say that no matter how small a magnitude one takes, there is a smaller, but there are no actual infinitesimals. In geometry one may calculate with expressions apparently denoting such entities, on the understanding that they are fictions, standing for variable magnitudes that can be made arbitrarily small, so as to produce demonstrations that there is no error in the resulting expressions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.