Abstract

This paper describes two Legendre spectral methods for the − grad(div) eigenvalue problem in R 2 . The first method uses a single grid resulting from the P N ⊗ P N discretization in primal and dual variational formulations. As is well-known, this method is unstable and exhibits spectral ‘pollution’ effects: increased number of singular eigenvalues, and increased multiplicity of some eigenvalues belonging to the regular spectrum. Our study aims at the understanding of these effects. The second spectral method is based on a staggered grid of the P N ⊗ P N - 1 discretization. This discretization leads to a stable algorithm, free of spurious eigenmodes and with spectral convergence of the regular eigenvalues/eigenvectors towards their analytical values. In addition, divergence-free vector fields with sufficient regularity properties are spectrally projected onto the discrete kernel of − grad(div), a clear indication of the robustness of this algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.