Abstract

Tuna and billfish are large pelagic fish of ecological importance in open oceans. As top predators with a long lifespan, they are prone to exposure to various contaminants such as persistent organic pollutants (POPs) and contaminants of emerging concern. In this study, three pollutant families were investigated, including polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs) and perfluoroalkyl substances (PFASs), including perfluorooctane sulfonate (PFOS) and perfluorocarboxylic acids (PFCAs). Contamination was investigated in individuals from three tropical tuna species, namely bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis) and yellowfin (Thunnusalbacares) tunas and the billfish swordfish (Xiphias gladius), collected from various areas of the western Indian Ocean (WIO) in 2013-2014. Contamination levels and profiles were examined in fish muscle, together with biological parameters (fish length / age, sex, lipid content) and ecological tracers (carbon and nitrogen stable isotopes). POP levels were low in all species in comparison to other locations worldwide, revealing a low impact of anthropogenic organic contaminants in the WIO. A predominance of OCPs (especially DDTs) versus PCBs was highlighted in all species; PFASs were predominant over chlorinated POPs in tunas. Among the studied PFASs, long-chain PFCAs were found to prevail over PFOS in all species. Organic contaminant profiles differed across species according to their foraging habitat; swordfish and bigeye tuna, which both feed in deep oceanic layers, showed similarities in their contaminant profiles. Geographically, the distinct DDT profiles of fish from the Mozambique Channel suggested an exposure to different DDT sources, in line with regional use of this insecticide and coupled with an extended residence time of fish in the Channel. To our knowledge, the data presented here are among the first obtained for legacy and emerging organic contaminants in various species of large pelagic predators from the WIO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call