Abstract
The C. elegans intestine is a simple tube consisting of a monolayer of epithelial cells. During embryogenesis, cells in the anterior of the intestinal primordium undergo reproducible movements that lead to an invariant, asymmetrical 'twist' in the intestine. We have analyzed the development of twist to determine how left-right and anterior-posterior asymmetries are generated within the intestinal primordium. The twist requires the LIN-12/Notch-like signaling pathway of C. elegans. All cells within the intestinal primordium initially express LIN-12, a receptor related to Notch; however, only cells in the left half of the primordium contact external, nonintestinal cells that express LAG-2, a ligand related to delta. LIN-12 and LAG-2 mediated interactions result in the left primordial cells expressing lower levels of LIN-12 than the right primordial cells. We propose that this asymmetrical pattern of LIN-12 expression is the basis for asymmetry in later cell-cell interactions within the primordium that lead directly to intestinal twist. Like the interactions that initially establish LIN-12 asymmetry, the later interactions are mediated by LIN-12. The later interactions, however, involve a different ligand related to delta, called APX-1. We show that the anterior-posterior asymmetry in intestinal twist involves the kinase LIT-1, which is part of a signaling pathway in early embryogenesis that generates anterior-posterior differences between sister cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.