Abstract

BackgroundThe impact of increased energy resolution of cadmium–zinc–telluride (CZT) cameras on the assessment of left ventricular function under dual-isotope conditions (99mTc and 123I) remains unknown.The Amsterdam-gated dynamic cardiac phantom (AGATE, Vanderwilt techniques, Boxtel, The Netherlands) was successively filled with a solution of 123I alone, 99mTc alone, and a mixture of 123I and 99mTc. A total of 12 datasets was acquired with each commercially available CZT camera (DNM 530c, GE Healthcare and DSPECT, Biosensors International) using both energy windows (99mTc or 123I) with ejection fraction set to 33, 45, and 60 %. End-diastolic (EDV) and end-systolic (ESV) volumes, ejection fraction (LVEF), and regional wall motion and thickening (17-segment model) were assessed using Cedars-Sinai QGS Software. Concordance between single- and dual-isotope acquisitions was tested using Lin’s concordance correlation coefficient (CCC) and Bland–Altman plots.ResultsThere was no significant difference between single- or simultaneous dual-isotope acquisition (123I and 99mTc) for EDV, ESV, LVEF, or segmental wall motion and thickening. Myocardial volumes using single- (123I, 99mTc) and dual-isotope (reconstructed using both 123I and 99mTc energy windows) acquisitions were, respectively, the following: EDV (mL) 88 ± 27 vs. 89 ± 27 vs. 92 ± 29 vs. 90 ± 26 for DNM 530c (p = NS) and 82 ± 20 vs. 83 ± 22 vs. 79 ± 19 vs. 77 ± 20 for DSPECT (p = NS); ESV (mL) 40 ± 1 vs. 41 ± 2 vs. 41 ± 2 vs. 42 ± 1 for DNM 530c (p = NS) and 37 ± 5 vs. 37 ± 1 vs. 35 ± 3 vs. 34 ± 2 for DSPECT (p = NS); LVEF (%) 52 ± 14 vs. 51 ± 13 vs. 53 ± 13 vs. 51 ± 13 for DNM 530c (p = NS) and 52 ± 16 vs. 54 ± 13 vs. 54 ± 14 vs. 54 ± 13 for DSPECT (p = NS); regional motion (mm) 6.72 ± 2.82 vs. 6.58 ± 2.52 vs. 6.86 ± 2.99 vs. 6.59 ± 2.76 for DNM 530c (p = NS) and 6.79 ± 3.17 vs. 6.81 ± 2.75 vs. 6.71 ± 2.50 vs. 6.62 ± 2.74 for DSPECT (p = NS). The type of camera significantly impacted only on ESV (p < 0.001).ConclusionsThe new CZT cameras yielded similar results for the assessment of LVEF and regional motion using different energy windows (123I or 99mTc) and acquisition types (single vs. dual). With simultaneous dual-isotope acquisitions, the presence of 123I did not impact on LVEF assessment within the 99mTc energy window for either CZT camera.

Highlights

  • The impact of increased energy resolution of cadmium–zinc–telluride (CZT) cameras on the assessment of left ventricular function under dual-isotope conditions (99mTc and 123I) remains unknown.The Amsterdam-gated dynamic cardiac phantom (AGATE, Vanderwilt techniques, Boxtel, The Netherlands) was successively filled with a solution of 123I alone, 99mTc alone, and a mixture of 123I and 99mTc

  • There was no significant difference between single- or simultaneous dual-isotope acquisition (123I and 99mTc) for end-diastolic volume (EDV), end-systolic volume (ESV), LVEF, or segmental wall motion and thickening

  • With simultaneous dual-isotope acquisitions, the presence of 123I did not impact on LVEF assessment within the 99mTc energy window for either CZT camera

Read more

Summary

Introduction

The impact of increased energy resolution of cadmium–zinc–telluride (CZT) cameras on the assessment of left ventricular function under dual-isotope conditions (99mTc and 123I) remains unknown.The Amsterdam-gated dynamic cardiac phantom (AGATE, Vanderwilt techniques, Boxtel, The Netherlands) was successively filled with a solution of 123I alone, 99mTc alone, and a mixture of 123I and 99mTc. The impact of increased energy resolution of cadmium–zinc–telluride (CZT) cameras on the assessment of left ventricular function under dual-isotope conditions (99mTc and 123I) remains unknown. End-diastolic (EDV) and end-systolic (ESV) volumes, ejection fraction (LVEF), and regional wall motion and thickening (17-segment model) were assessed using Cedars-Sinai QGS Software. The measurement of left ventricular (LV) ejection fraction (LVEF), end-diastolic volume (EDV), and end-systolic volume (ESV) using cardiac SPECT has been widely validated in comparison to other imaging techniques [1, 2]. Previous studies using serial 123I-mIBG and 201thallium acquisitions have suggested that myocardial sympathetic innervation is compromised after myocardial infarction [6,7,8]. Comparing sympathetic innervation and viability is of potential interest to assess the risk of ventricular arrhythmias after myocardial infarction (MI) [10, 11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call