Abstract

PurposeTo investigate the influence of myocardial fibrosis on left ventricular (LV) diastolic filling patterns in triathletes compared to sedentary controls by cardiac magnetic resonance (CMR) imaging. Method101 male triathletes (43 ± 11 years) and 28 controls (41 ± 10 years) were recruited and underwent 1.5 T CMR including cine SSFP series, late gadolinium enhancement (LGE) imaging and T1 mapping. Functional and morphological parameters were obtained, and CMR-based LV diastolic filling parameters such as the early peak-filling rate (EPFR), atrial peak-filling rate (APFR) and peak-filling rate ratio (PFRR = EPFR/APFR) were determined by time-volume analysis of the cine series. ResultsNon-ischemic LGE was detected in 20 triathletes (20 %) and in none of the controls. Compared to controls LGE-negative (LGE-) triathletes showed similar EPFR (216 ± 58 ml/s/m2 vs 224 ± 69 ml/s/m2, P = 0.52) but lower APFR (120 ± 46 ml/s/m2 vs 147 ± 55 ml/s/m2, P < 0.05), resulting in higher PFRR (2.1 ± 1 vs 1.6 ± 0.5, P < 0.01). LGE-positive (LGE + ) triathletes had similar EPFR (212 ± 73 ml/s/m2, P = 0.798), but higher APFR (149 ± 50 ml/s/m2, P < 0.05) and decreased PFRR (1.6 ± 0.7, P < 0.05) compared to LGE- triathletes. LGE + triathletes had increased LV mass index (88 ± 10 g/m2 vs 80 ± 12 g/m2, P < 0.01) and extracellular volume (ECV) fraction (26.2 ± 2.7 % vs 24.4 ± 1.7 %, P < 0.001) compared to LGE- triathletes. ConclusionsAthletic activity leads to “supernormal” LV diastolic filling pattern in LGE- triathletes, which may be attributable to increased LV myocardial flexibility and elasticity. However, LGE + triathletes demonstrate a pseudo-normalization characterized by compensatory increase of atrial contraction. Possibly, due to reduced passive elasticity associated myocardial fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call