Abstract

BackgroundThe 2016 guidelines for left ventricular diastolic dysfunction diagnosis has been simplified from previous versions; however, multiparametric diagnosis approach still exists indeterminate left ventricular diastolic dysfunction category. Left atrial (LA) strain was recently found useful to predict elevated left ventricular (LV) filling pressures noninvasively. This study aimed to (1) analyze the diagnostic value of LA strain for noninvasive assessment of LV filling pressures in patients with stable coronary artery disease (CAD) with preserved LV ejection fraction (LVEF), using invasive hemodynamic assessment as the gold standard, and (2) explore whether LA strain combined with conventional diastolic parameters could detect elevated LV filling pressures alone.MethodsSixty-four patients with stable CAD having LVEF > 50% and 30 healthy controls were enrolled. Two-dimensional speckle-tracking echocardiography was used to measure LA strain during the reservoir (LASr), conduit, and contraction phases. LV end-diastolic pressure (LVEDP), as a surrogate for LV filling pressures, was invasively obtained by left heart catheterization. Logistic regression was used to calculate the odds ratio to predict LV filling pressures. Pearson’s correlation was used to analyze associations between echocardiographic parameters and LVEDP. The area under the receiver-operating characteristic curve was calculated to determine the capability of the echocardiographic parameters to detect elevated LVEDP. Inter-technique agreement was analyzed by contingency tables and tested by kappa statistics.ResultsLASr and the ratio of early-diastolic transmitral flow velocity (E) to tissue Doppler early-diastolic septal mitral annular velocity (E/E′septal) significantly predicted elevated LV filling pressures. LASr was combined with E/E′septal to generate a novel parameter (LASr/E/E′septal). LASr/E/E′septal had the best predictive ability of elevated LV filling pressures. LVEDP was negatively correlated with LASr and LASr/E/E′septal but positively correlated with E/E′septal. The area under the receiver-operating characteristic curve of LASr/E/E′septal was higher than that of LASr alone (0.83 vs. 0.75), better than all conventional LV diastolic parameters. Inter-technique agreement analysis showed that LASr/E/E′septal had good agreement with the invasive LVEDP measurement, better than the 2016 guideline (kappa = 0.63 vs. 0.25).ConclusionsLASr provided additive diagnostic value for the noninvasive assessment of LV filling pressures. LASr/E/E′septal had the potential to be a better single noninvasive index to predict elevated LV filling pressures in patients with stable CAD and preserved LVEF.

Highlights

  • The 2016 guidelines for left ventricular diastolic dysfunction diagnosis has been simplified from previous versions; multiparametric diagnosis approach still exists indeterminate left ventricular diastolic dysfunction category

  • LV end-diastolic pressure (LVEDP) was negatively correlated with LA strain during the reservoir (LASr) and LASr/E/earlydiastolic myocardial velocity (E′)septal but positively correlated with E/E′ septal

  • The American Society of Echocardiography (ASE) and European Association of Cardiovascular Imaging (EACVI) 2016 guideline algorithms for left ventricular diastolic dysfunction (LVDD) diagnosis are simpler than previous versions, making clinical use more convenient

Read more

Summary

Introduction

The 2016 guidelines for left ventricular diastolic dysfunction diagnosis has been simplified from previous versions; multiparametric diagnosis approach still exists indeterminate left ventricular diastolic dysfunction category. This study aimed to (1) analyze the diagnostic value of LA strain for noninvasive assessment of LV filling pressures in patients with stable coronary artery disease (CAD) with preserved LV ejection fraction (LVEF), using invasive hemodynamic assessment as the gold standard, and (2) explore whether LA strain combined with conventional diastolic parameters could detect elevated LV filling pressures alone. The American Society of Echocardiography (ASE) and European Association of Cardiovascular Imaging (EACVI) 2016 guideline algorithms for left ventricular diastolic dysfunction (LVDD) diagnosis are simpler than previous versions, making clinical use more convenient. Multiple studies have revealed that coronary artery disease (CAD) can cause remodeling of the left ventricular (LV) structure, leading to an adverse impact on LV relaxation and myocardial stiffness [3]. An accurate parameter to detect LVDD earlier is in urgent need

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call