Abstract

Polychromatic lighting sources that are composed of at least four different colored light-emitting diodes (LEDs) offer versatility in color quality of illumination. In this paper, different methods of assessment of color quality of white light are discussed and a general approach to the solution of the color-mixing problem by means of optimization in respect of several color rendition characteristics is considered. Spectral power distributions of model tetrachromatic solid-state sources obtained by maximizing various figures of merit, such as color rendering index, gamut area index, color quality scale, and indices based on the statistical analysis of the just perceivable chromaticity differences for a large number of test color samples, are demonstrated. A concept tetrachromatic lighting source that can be operated within a dynamical trade-off between two opposing color rendition characteristics, the ability to render colors with high fidelity and the ability to render colors with increased chromatic saturation, is introduced. Such "smart" sources with tailored color quality can meet individual needs and preferences of color vision and find numerous applications in lighting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.