Abstract

Recognition is an important stage in the establishment of highly specific mutualistic associations. Yet, for the majority of symbioses, very few of the mechanisms involved in recognition and specificity are known. In this study, we provide evidence for a recognition mechanism at the onset of symbiosis between larvae of the coral Fungia scutaria and their endosymbiotic dinoflagellate algae. This recognition step occurs during initial cellular contact between the symbiotic partners through a lectin/glycan interaction. We determined that an intact algal cell surface was required for successful infection of F. scutaria larvae. Modification of the algal cell surface by enzymatic digestion with trypsin or N-glycosidase significantly reduced infection success, and implicated algal cell surface glycans in recognition. Using flow cytometry, alpha-mannose/alpha-glucose and alpha-galactose residues were identified as potential recognition ligands on the algal cell surface. Finally, inhibition of these cell surface glycans significantly reduced infection of F. scutaria larvae by the algae. These data provide evidence that the algal cell surface contains glycan ligands, such as alpha-mannose/alpha-glucose and alpha-galactose, which play a role in recognition during initial contact at the onset of symbiosis with F. scutaria larvae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.