Abstract

The enzyme lecithin-cholesterol acyltransferase (LCAT) transfers an acyl chain from lecithin to cholesterol or oestradiol, thus playing a crucial role in reverse cholesterol transport and follicular synthesis of potent long-lived oestrogens. The mechanism of catalysis is biphasic, as it is based on a phospholipase and an esterifying activity. Sulfhydryl groups were previously reported to be required for the esterification step. Lecithin-cholesterol acyltransferase has previously been shown to be inhibited by thiol oxidants such as peroxynitrite. Peroxynitrite also converts tyrosine to nitrotyrosines. In the present study, high levels of nitrotyrosine associated with low LCAT activity, and vice versa, were found in human preovulatory follicular fluids. Follicular fluids were also analysed for oestradiol (E) and progesterone (P) concentrations. The E/P ratio, which decreases as ovulation approaches, was used to evaluate the maturation status of each follicle. Enzyme activity was negatively correlated with the E/P ratio. Ascorbate (Asc) and alpha-tocopherol (Toc) were titrated in follicular fluid and plasma to evaluate their accumulation or consumption in the follicle. High LCAT activity was found in follicular fluids where Asc and Toc had accumulated, whereas lower activity was associated with Asc and Toc consumption. The consumption of both antioxidants was positively correlated with the E/P ratio. The results suggest that as follicle maturation progresses, Toc and Asc concentrations increase in follicular fluid, thus protecting LCAT from oxidative damage and loss of activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call