Abstract
In this paper, we propose a Learning-based gEnome Codec (LEC), which is designed for high efficiency and enhanced flexibility. The LEC integrates several advanced technologies, including Group of Bases (GoB) compression, multi-stride coding and bidirectional prediction, all of which are aimed at optimizing the balance between coding complexity and performance in lossless compression. The model applied in our proposed codec is data-driven, based on deep neural networks to infer probabilities for each symbol, enabling fully parallel encoding and decoding with configured complexity for diverse applications. Based upon a set of configurations on compression ratios and inference speed, experimental results show that the proposed method is very efficient in terms of compression performance and provides improved flexibility in real-world applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.