Abstract
In this paper, we propose the complexity configurable learning-based genome data compression method, in an effort to achieve a good balance between coding complexity and performance in lossless DNA compression. In particular, we first introduce the concept of Group of Bases (GoB), which serves as the foundation and enables the parallel implementation of the learning-based genome data compression. Subsequently, the Markov model is introduced for modeling the initial content, and the learning-based inference is achieved for the remaining base data. The compression is finally achieved with efficient arithmetic coding, and based upon a set of configurations on compression ratios and inference speed, the proposed method is shown to be more efficient and provide more flexibility in real-world applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.