Abstract

In this paper, we reformulate a standard one-class SVM (support vector machine) and derive a least squares version of the method, which we call LS (least squares) one-class SVM. The LS one-class SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. One can use the distance to the hyperplane as a proximity measure to determine which objects resemble training objects better than others. This differs from the standard one-class SVMs that detect which objects resemble training objects. We demonstrate the performance of the LS one-class SVM on relevance ranking with positive examples, and also present the comparison with traditional methods including the standard one-class SVM. The experimental results indicate the efficacy of the LS one-class SVM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.