Abstract

A significant amount of the computational time in large Monte Carlo simulations of lattice field theory is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant finite difference discretizations of the Dirac operator present serious challenges for standard iterative methods. For interesting physical parameters, the discretized operator is large and ill-conditioned and has random coefficients. More recently, adaptive algebraic multigrid (AMG) methods have been shown to be effective preconditioners for Wilson's discretization [J. Brannick et al., Lect. Notes Comput. Sci. Eng., 55 (2006), pp. 499–506], [J. Brannick et al., Phys. Rev. Lett., 100 (2008), pp. 041601–041604] of the Dirac equation. This paper presents an alternate discretization of the two-dimensional Dirac operator of quantum electrodynamics (QED) based on least-squares finite elements. The discretization is systematically developed and, physical properties of the resulting matrix system are discussed. Finally, numerical experiments are presented that demonstrate the effectiveness of adaptive smoothed aggregation ($\alpha$SA) multigrid as a preconditioner for the discrete field equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.