Abstract

We consider envy-free and budget-balanced allocation rules for problems where a number of indivisible objects and a fixed amount of money is allocated among a group of agents. In finite economies, we identify under classical preferences each agent’s maximal gain from manipulation. Using this result we find the envy-free and budget-balanced allocation rules which are least manipulable for each preference profile in terms of any agent’s maximal gain. If preferences are quasi-linear, then we can find an envy-free and budget-balanced allocation rule such that for any problem, the maximal utility gain from manipulation is equalized among all agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.