Abstract
We provide a framework to study stability notions for two-sided dynamic matching markets in which matching is one-to-one and irreversible. The framework gives center stage to the set of matchings an agent anticipates would ensue should they remain unmatched, which we refer to as the agent’s conjectures. A collection of conjectures, together with a pairwise stability and individual rationality requirement given the conjectures, defines a solution concept for the economy. We identify a sufficient condition — consistency — for a family of conjectures to lead to a nonempty solution (cf. Hafalir, 2008). As an application, we introduce two families of consistent conjectures and their corresponding solution concepts: continuation-value-respecting dynamic stability, and the extension to dynamic markets of the solution concept in Hafalir (2008), sophisticated dynamic stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.