Abstract
In this paper, we propose a new multitask feature selection model based on least absolute deviations. However, due to the inherent nonsmoothness of \begin{document}$l_1 $\end{document} norm, optimizing this model is challenging. To tackle this problem efficiently, we introduce an alternating iterative optimization algorithm. Moreover, under some mild conditions, its global convergence result could be established. Experimental results and comparison with the state-of-the-art algorithm SLEP show the efficiency and effectiveness of the proposed approach in solving multitask learning problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Industrial & Management Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.