Abstract
Mobility management in 5G networks is a very challenging issue. It requires novel ideas and improved management so that signaling is kept minimized and far from congesting the network. Mobile networks have become massive generators of data and in the forthcoming years this data is expected to increase drastically. The use of intelligence and analytics based on big data is a good ally for operators to enhance operational efficiency and provide individualized services. This work proposes to exploit User Equipment (UE) patterns and hidden relationships from geo-spatial time series to minimize signaling due to idle mode mobility. We propose a holistic methodology to generate optimized Tracking Area Lists (TALs) in a per UE manner, considering its learned individual behavior. The $k$ k -means algorithm is proposed to find the allocation of cells into tracking areas. This is used as a basis for the TALs optimization itself, which follows a combined multi-objective and single-objective approach depending on the UE behavior. The last stage identifies UE profiles and performs the allocation of the TAL by using a neural network. The goodness of each technique has been evaluated individually and jointly under very realistic conditions and different situations. Results demonstrate important signaling reductions and good sensitivity to changing conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.