Abstract

We investigate the potential of stochastic neural networks for learning effective waveform-based acoustic models. The waveform-based setting, inherent to fully end-to-end speech recognition systems, is motivated by several comparative studies of automatic and human speech recognition that associate standard non-adaptive feature extraction techniques with information loss which can adversely affect robustness. Stochastic neural networks, on the other hand, are a class of models capable of incorporating rich regularization mechanisms into the learning process. We consider a deep convolutional neural network that first decomposes speech into frequency sub-bands via an adaptive parametric convolutional block where filters are specified by cosine modulations of compactly supported windows. The network then employs standard non-parametric 1D convolutions to extract relevant spectro-temporal patterns while gradually compressing the structured high dimensional representation generated by the parametric block. We rely on a probabilistic parametrization of the proposed neural architecture and learn the model using stochastic variational inference. This requires evaluation of an analytically intractable integral defining the Kullback-Leibler divergence term responsible for regularization, for which we propose an effective approximation based on the Gauss-Hermite quadrature. Our empirical results demonstrate a superior performance of the proposed approach over comparable waveform-based baselines and indicate that it could lead to robustness. Moreover, the approach outperforms a recently proposed deep convolutional neural network for learning of robust acoustic models with standard FBANK features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call