Abstract

We propose a novel approach to model viscoelasticity materials, where rate-dependent and non-linear constitutive relationships are approximated with deep neural networks. We assume that inputs and outputs of the neural networks are not directly observable, and therefore common training techniques with input–output pairs for the neural networks are inapplicable. To that end, we develop a novel computational approach to both calibrate parametric and learn neural-network-based constitutive relations of viscoelasticity materials from indirect displacement data in the context of multiple-physics systems. We show that limited displacement data holds sufficient information to quantify the viscoelasticity behavior. We formulate the inverse computation – modeling viscoelasticity properties from observed displacement data – as a PDE-constrained optimization problem and minimize the error functional using a gradient-based optimization method. The gradients are computed by a combination of automatic differentiation and implicit function differentiation rules. The effectiveness of our method is demonstrated through numerous benchmark problems in geomechanics and porous media transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.