Abstract
The limited availability of thermal infrared (TIR) training samples leads to suboptimal target representation by convolutional feature extraction networks, which adversely impacts the accuracy of TIR target tracking methods. To address this issue, we propose an unsupervised cross-domain model (UCDT) for TIR tracking. Our approach leverages labeled training samples from the RGB domain (source domain) to train a general feature extraction network. We then employ a cross-domain model to adapt this network for effective target feature extraction in the TIR domain (target domain). This cross-domain strategy addresses the challenge of limited TIR training samples effectively. Additionally, we utilize an unsupervised learning technique to generate pseudo-labels for unlabeled training samples in the source domain, which helps overcome the limitations imposed by the scarcity of annotated training data. Extensive experiments demonstrate that our UCDT tracking method outperforms existing tracking approaches on the PTB-TIR and LSOTB-TIR benchmarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.