Abstract

Huge amounts of textual streams are generated nowadays, especially in social networks like Twitter and Facebook. As the discussion topics and user opinions on those topics change drastically with time, those streams undergo changes in data distribution, leading to changes in the concept to be learned, a phenomenon called concept drift. One particular type of drift, that has not yet attracted a lot of attention is feature drift, i.e., changes in the features that are relevant for the learning task at hand. In this work, we propose an approach for handling feature drifts in textual streams. Our approach integrates i) an ensemble-based mechanism to accurately predict the feature/word values for the next time-point by taking into account the different features might be subject to different temporal trends and ii) a sketch-based feature space maintenance mechanism that allows for a memory-bounded maintenance of the feature space over the stream. Experiments with textual streams from the sentiment analysis, email preference and spam detection demonstrate that our approach achieves significantly better or competitive performance compared to baselines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.