Abstract

As data is ubiquitous in several real-world problems, data stream mining is a rapidly growing research area. It is expected that data stream sources will undergo changes in data distribution due to their ephemeral nature, which is called concept drift. There has been a very scant study of one particular type of drift, namely feature drift, so this paper aims to explore that type of drift. As a result of feature drift, learners must detect and adapt to changes in the relevant subset of features and the changing nature of the learning task itself. An approach to detecting feature drift was developed in this work. We used overlapping landmark windowing to keep the previous data's properties windows while analyzing the most recent data. Using the Mann-Whitney U test, we compare and store the distribution of each feature in two consecutive windows. Whenever the statistical properties of the window exclude a particular boundary from the distribution, drift is detected. We validated the effectiveness of our proposal by conducting experiments on real data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.