Abstract

We present a local perceptron-learning rule that either converges to a solution, or establishes linear nonseparability. We prove that when no solution exists, the algorithm detects this in a finite time (number of learning steps). This time is polynomial in typical cases and exponential in the worst case, when the set of patterns is nonstrictly linearly separable. The algorithm is local and has no arbitrary parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.