Abstract

Abstract Power supply noise (PSN) is becoming more severe as technology scales, and can cause signal distortion and increase gate delay. This can further result in improper circuit operation. In this paper, we propose a novel approach based on ATE (automatic test equipment) that teaches neural networks (NN) to correctly classify a set of worst case input patterns with respect to the maximum instantaneous current. This can be thought of as a learning behavior of chip power consumption change due to different input patterns. Then a genetic algorithm (GA) was applied to further optimize this set of NN worst case patterns. A final set of worst case patterns were expected to detect a small critical sequence of high switching currents that was directly related to the worst case power supply noise. This novel diagnosis approach can efficiently identify the defective design or weakness due to PSN as well as locate the defect or weaknesses within the design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.