Abstract
Near-Threshold Computing (NTC) has emerged as a solution that promises to significantly increase the energy efficiency of next-generation multi-core systems. This paper evaluates and analyzes the behavior of dynamic voltage and frequency scaling (DVFS) control algorithms for multi-core systems operating under near-threshold, nominal, or turbo-mode conditions. We adapt the model selection technique from machine learning to learn the relationship between performance and power. The theoretical results show that the resulting models satisfy convexity properties essential to efficiently determining optimal voltage/frequency operating points for minimizing energy consumption under throughput constraints or maximizing throughput under a given power budget. Our experimental results show that, compared with DVFS in the conventional operating range, extended range DVFS control including turbo-mode and near-threshold operation achieves an additional (1) 13.28% average energy reduction under iso-performance conditions, and (2) 7.54% average throughput increase under iso-power conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.