Abstract

In this paper, we give learning algorithms for two new subclass of DNF formulas: poly-disjoint One-read-once Monotone DNF; and Read-once Factorable Monotone DNF, which is a generalization of Read-once Monotone DNF formulas. Our result uses Fourier analysis to construct the terms of the target formula based on the Fourier coefficients corresponding to these terms. To facilitate this result, we give a novel theorem on the approximation of Read-once Factorable Monotone DNF formulas, in which we show that if a set of terms of the target formula have polynomially small mutually disjoint satisfying sets, then the set of terms can be approximated with small error by the greatest common factor of the set of terms. This approximation theorem may be of independent interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.