Abstract
We study the average number of well-chosen labeled examples that are required for a helpful teacher to uniquely specify a target function within a concept class. This “average teaching dimension” has been studied in learning theory and combinatorics and is an attractive alternative to the “worst-case” teaching dimension of Goldman and Kearns which is exponential for many interesting concept classes. Recently Balbach showed that the classes of 1-decision lists and 2-term DNF each have linear average teaching dimension. As our main result, we extend Balbach’s teaching result for 2-term DNF by showing that for any 1≤s≤2Θ(n), the well-studied concept classes of at-most-s-term DNF and at-most-s-term monotone DNF each have average teaching dimension O(ns). The proofs use detailed analyses of the combinatorial structure of “most” DNF formulas and monotone DNF formulas. We also establish asymptotic separations between the worst-case and average teaching dimension for various other interesting Boolean concept classes such as juntas and sparse GF 2 polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.