Abstract
As an essential way of human emotional behavior understanding, speech emotion recognition (SER) has attracted a great deal of attention in human-centered signal processing. Accuracy in SER heavily depends on finding good affect- related , discriminative features. In this paper, we propose to learn affect-salient features for SER using convolutional neural networks (CNN). The training of CNN involves two stages. In the first stage, unlabeled samples are used to learn local invariant features (LIF) using a variant of sparse auto-encoder (SAE) with reconstruction penalization. In the second step, LIF is used as the input to a feature extractor, salient discriminative feature analysis (SDFA), to learn affect-salient, discriminative features using a novel objective function that encourages feature saliency, orthogonality, and discrimination for SER. Our experimental results on benchmark datasets show that our approach leads to stable and robust recognition performance in complex scenes (e.g., with speaker and language variation, and environment distortion) and outperforms several well-established SER features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.