Abstract

Hierarchical representations and modeling of sensorimotor observations is a fundamental approach for the development of scalable robot control strategies. Previously, we introduced the novel hierarchical self-organizing map-based encoding algorithm (HSOME) that is based on a computational model of infant cognition. Each layer is a temporally augmented self-organizing map and every node updates a decaying activation value. The bottom level encodes sensorimotor instances while their temporal associations are hierarchically built on the layers above. In the past, HSOME has shown to support hierarchical encoding of sequential sensor-actuator observations both in abstract domains and real humanoid robots. Two novel features are presented here starting with the novel skill acquisition in the complex domain of learning a double tap tactile gesture between two humanoid robots. During reproduction, the robot can either perform a double tap or prioritize to receive a higher reward by performing a single tap instead. Second, HSOME has been extended to recall past observations and reproduce rhythmic patterns in the absence of input relevant to the joints by priming initially the reproduction of specific skills with an input. We also demonstrate in simulation how a complex behavior emerges from the automatic reuse of distinct oscillatory swimming demonstrations of a robotic salamander.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.