Abstract

With the availability of high processing capability hardwares at less expensive prices, it is possible to successfully train multi-layered neural networks. Since then, several training algorithms have been developed, from algorithms which are statically initialized to algorithms which adaptively change. It is observed that to improve the training process of neural networks, the hyper-parameters are to be fine tuned. Learning Rate, Decay rate, number of epochs, number of hidden layers and number of neurons in the network are some of the hyper-parameters in concern. Of these, the Learning rate plays a crucial role in enhancing the learning capability of the network. Learning rate is the value by which the weights are adjusted in a neural network with respect to the gradient descending towards the expected optimum value. This paper discusses four types of learning rate scheduling which helps to find the best learning rates in less number of epochs. Following these scheduling methods, facilitates to find better initial learning rate value and step-wise updation during the later phase of the training process. In addition the discussed learning rate schedules are demonstrated using COIL-100, Caltech-101 and CIFAR-10 datasets trained on ResNet. The performance is evaluated using the metrics, Precision, Recall and F1-Score. The results analysis show that, depending on the nature of the dataset, the performance of the Learning Rate Scheduling policy varies. Hence the choice of the scheduling policy to train a neural network is made, based on the data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.