Abstract
Oriented object detectors have suffered severely from the discontinuous boundary problem for a long time. In this work, we ingeniously avoid this problem by relating regression outputs to regression target orientations. The core idea of our method is to build a contour function which imports orientations and outputs the corresponding distance predictions. Inspired by Fourier transformations, we assume this function can be represented as a linear combination of trigonometric functions and Fourier series. We replace the final 4D layer in the regression branch of fully convolutional one-stage object detector (FCOS) with a Fourier Series Transformation (FST) module and term this new network FCOSF. By this unique design, the regression outputs in FCOSF can adaptively vary according to the regression target orientations. Thus, the discontinuous boundary has no impact on our FCOSF. More importantly, FCOSF avoids building complicated oriented box representations, which usually cause extra computations and ambiguities. With only flipping augmentation and single-scale training and testing, FCOSF with ResNet-50 achieves 73.64% mAP on the DOTA-v1.0 dataset with up to 23.6 FPS speed, surpassing all one-stage oriented object detectors. On the more challenging DOTA-v2.0 dataset, FCOSF also achieves the highest results of 51.75% mAP among one-stage detectors. More experiments on DIOR-R and HRSC2016 are also conducted to verify the robustness of FCOSF. Code and models will be available at https://github.com/DDGRCF/FCOSF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.