Abstract

In this study we explored whether learning leads to enduring changes in inhibitory synaptic transmission in lateral amygdala (LA). We revealed that olfactory discrimination (OD) learning in rats led to a long-lasting increase in postsynaptic GABAA channel-mediated miniature inhibitory postsynaptic currents (mIPSCs) in LA. Olfactory fear conditioning, but not auditory fear conditioning, also led to enduring enhancement in GABAA-mediated mIPSCs. Auditory fear conditioning, but not olfactory fear conditioning or OD learning, induced an enduring reduction in the frequency but not the current of mIPSC events. We found that p21-activated kinase (PAK) activity is needed to maintain OD and olfactory fear conditioning learning-induced enduring enhancement of mIPSCs. Further analysis revealed that OD led to an increase in GABAA channel conductance whereas olfactory fear conditioning increased the number of GABAA channels. These alterations in GABAA channels conductance and level are controlled by PAK activity. Our study shows that the learning-induced increase in postsynaptic inhibitory transmission in LA is specific to the sensory modality. However, the mechanism that mediates the increase in inhibitory transmission, namely the increase in the conductance or in the level of GABAA channel, is learning specific.NEW & NOTEWORTHY Here we studied whether learning leads to long-lasting alterations in inhibitory synaptic transmission in lateral amygdala (LA). We revealed that learning led to enduring changes in inhibitory synaptic transmission in LA that are affected by the sensory modality (auditory or olfaction) used during learning. However, the mechanism that mediated the changes in inhibitory transmission (alterations in GABAA channel level or conductance) depended on the type of learning. These long-lasting alterations are maintained by p21-activated kinase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.