Abstract
Suboptimal search algorithms offer shorter solving times by sacrificing guaranteed solution optimality. While optimal searchalgorithms like A* and IDA* require admissible heuristics, suboptimalsearch algorithms need not constrain their guidance in this way. Previous work has explored using off-line training to transform admissible heuristics into more effective inadmissible ones. In this paper we demonstrate that this transformation can be performed on-line, during search. In addition to not requiring training instances and extensive pre-computation, an on-line approach allows the learned heuristic to be tailored to a specific problem instance. We evaluate our techniques in four different benchmark domains using both greedy best-first search and bounded suboptimal search. We find that heuristics learned on-line result in both faster search andbetter solutions while relying only on information readily available in any best-first search.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.