Abstract
Although A* search can be efficiently parallelized using methods such as Hash-Distributed A* (HDA*), distributed parallelization of Greedy Best First Search (GBFS), a suboptimal search which often finds solutions much faster than A*, has received little attention. We show that surprisingly, HDGBFS, an adaptation of HDA* to GBFS, often performs significantly worse than sequential GBFS. We analyze and explain this performance degradation, and propose a novel method for distributed parallelization of GBFS, which significantly outperforms HDGBFS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.