Abstract
The goal of representation learning of knowledge graph is to encode both entities and relations into a low-dimensional embedding space. Many recent works have demonstrated the benefits of knowledge graph embedding on knowledge graph completion task, such as relation extraction. However, we observe that: (1) existing methods simply take direct relations between entities into consideration and fails to express high-order structural relationships between entities; (2) these methods simply leverage relation triples of Knowledge Graphs while ignoring a large number of attribute triples that encode rich semantic information. To overcome these limitations, this paper proposes a novel knowledge graph embedding method, named (KANE), which is inspired by the recent developments in graph convolutional networks (GCN). KANE can capture both high-order structural and attribute information of Knowledge Graphs in an efficient, explicit and unified manner under the graph convolutional networks framework. Empirical results on three datasets show that KANE significantly outperforms seven state-of-the-art methods. Further analysis verify the efficiency of our method and the benefits brought by the attention mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.