Abstract

Knowledge graph (KG) embedding models map nodes and edges to fixed-length vectors and obtain the similarity of nodes as the output of a scoring function to predict missing links between nodes. KG embedding methods based on graph convolutional networks (GCNs) have recently gained significant attention due to their ability to add information of neighboring nodes into the nodes’ embeddings. However, existing GCNs are primarily based on real-valued embeddings, which have high distortion, particularly when modeling graphs with varying geometric structures. In this paper, we propose complex graph convolutional network (ComplexGCN), a novel extension of the standard GCNs in complex space to combine the expressiveness of complex geometry with GCNs for improving the representation quality of KG components. The proposed ComplexGCN comprises a set of complex graph convolutional layers and a complex scoring function based on PARATUCK2 decomposition: the former includes information of neighboring nodes into the nodes’ embeddings, while the latter leverages these embeddings to predict new links between nodes. The proposed model demonstrates enhanced performance compared to existing methods on the two recent standard link prediction datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.